使用抑制电磁干扰电容器需要关注的内容
电磁干扰指在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electrognetic Interference EMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰。
1.对电磁干扰的认知
21世纪将是信息的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。
电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、线、控制线及地线而形成的。按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。
2.电磁兼容的问题
20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。家用电器、通信、计算机及信息设备、电动工具、、等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰的能量密度增大,使有限空间内的电磁环境更为恶化。
日本SAPIO公布了日本家用电器电磁辐射的检测结果(表1)。瑞典等北欧三国于年所作的联合调查指出:人类受到2mG(毫高斯)以上的电磁辐射影响,患白血病的机会是正常人的2.1倍,患脑肿瘤的机会是正常人的1.5倍,其他疾病的发病概率也明显增加。
3.明确EMI抑制技术的主要内容
(1). 抗EMI系统设计技术
抗EMI系统设计技术是提高电子整机EMC性能的关键所在。因此该技术又称为EMC设计技术。
EMC设计的目的是使电子、电气产品在一定的电磁环境中能正常工作,既满足标准规定的抗干扰极限值要求,在受到一定的电磁干扰时,无性能降级或故障;又满足标准规定的电磁辐射极限值要求,对电磁环境不构成污染源。因此,EMC是产品的重要性能之一,也是实现产品效能的重要保证。
EMC设计要从产品预期的电磁环境、干扰源、耦合途径和敏感部件入手,采用相应的技术措施,抑制干扰源、切断或削弱耦合途径,增强敏感部件的抗干扰能力等。并进行计算机仿真和测试验证。
EMC设计技术包括系统设计、结构设计、材料和元器件的选取以及抗EMI元器件的使用等。其中有源器件的选用十分关键。
EMC设计技术在产品设计的初级阶段就应十分重视,尽可能把80%~90%以上的问题解决在初级阶段。一旦产品批量生产了,发现EMC问题再去解决,就会事倍功半。
(2). EMI抑制材料技术
(3). 屏蔽材料
屏蔽就是利用材料的反射和/或吸收作用,以减少EMI辐射。屏蔽材料的有效填置可减少或清除不必要的缝隙,抑制电磁耦合辐射,降低电磁泄漏和干扰。具有较高导电、导磁性能的材料可作为电磁屏蔽材料,一般要求屏蔽性能达40~60dB。目前常用的屏蔽材料有金属材料和高分子材料两大类。
金属材料按用途又可分为衬垫屏蔽材料和透气性屏蔽材料两种。任何实用的机箱都会有缝隙,由于缝隙的导电不连续性,在该处即产生电磁泄漏。解决的办法是在非长久性搭接处加电磁密封衬垫。如金属丝网衬垫、导电橡胶衬垫、铍铜指形簧片、螺旋管衬垫及橡胶芯衬垫+金属丝网等。任何机箱为了散热透气往往开有小孔,因此引发电磁泄漏,用金属丝网难以达到完全屏蔽效果,需采用波导窗、多层截止波导通风板和泡沫金属等以改善屏蔽效果。由铜或镍及连通的空洞组成、空心金属骨架互连的三维网状结构金属泡沫作屏蔽材料,在10~MHz范围内,屏蔽性能达90dB,且重量轻、体积小,是很有前途的屏蔽材料。
高分子材料主要包括导电塑料、导电涂料和表面导电材料,此外还有导电玻璃和导电膜片;与金属材料相比,它们具有重量轻、易成型、电阻率可调等特点。导电塑料是将导电物质如碳黑、金属粉或金属纤维掺杂于树脂中制成,屏蔽性能可达30~80dB;导电涂料通常由Ag、Ni、Cu或C导电物质作填料,与合成树脂、溶剂和添加剂一起,涂覆于塑料表面形成固化膜,产生导电屏蔽效果,性能为20~60dB不等;表面导电屏蔽材料一般采用金属熔射、塑料电镀、真空蒸发、贴金属箔等手段,使绝缘材料表面形成导电层,镀层最薄为2~5μm,屏蔽性能可达45~dB,甚至更高。
(4).吸波材料
吸波材料的主要功能是将干扰源所产生的电磁辐射能量转化为其它能量(主要是热能)而耗散掉。根据损耗机理不同,可分为电阻型、电介质型和磁介质型三大类。
电阻型吸波材料主要有碳精粉、石墨和SiC等,吸波能力主要取决于材料电阻率,由于这种材料吸收层厚度t与电磁波长λ成正比,通常t=0.6λ,故适合于高频段,若在MHz时应用,材料厚度需达1.8m。
电介质型吸波材料有BaTiO2、铁电陶瓷等高介电材料,能量衰减主要来自介电损耗,而介电损耗与频率依赖关系较强,故吸收频带窄,且成本高,应用受到一定限制。
磁介质型吸波材料主要为铁氧体,利用铁氧体独特的复数磁导率产生的磁损耗机理,吸收电磁波,成本低廉,所以目前应用最为广泛。其中MnZn铁氧体EMI抑制材料主要用于低频,NiZn铁氧体EMI抑制材料主要用于高频,而羰基铁、铁基、镍基磁介质则可在大电流情况下应用,以解决铁氧体磁芯的磁饱和问题。